Главная - Современные подводные лодки - Преимущества неатомных подводных лодок. Часть 2

Двойные стандарты:

Земные станции спутниковых систем связи двойного назначения

News image

Понятие двойное назначение относится к технологиям или отдельным техническим средствам, которые могут применяться одновременно...

Проведены испытания нового российского спутника двойного назначения ГЛОНАСС-М

News image

В Красноярском крае прошли испытания нового российского спутника двойного назначения ГЛОНАСС-М . Он позволит непрерывно определ...

Производства двойного назначения

News image

Защита Родины — священный долг, а военный бюджет есть бездонная бочка. Однако продукция двойного назначения — золотое дно. Но гд...

Авторизация





Преимущества неатомных подводных лодок. Часть 2
Современныя техника - Современные подводные лодки

преимущества неатомных подводных лодок. часть 2

Для возвращения АНПА используются два торпедных аппарата одного борта. В верхнем торпедном аппарате размещается телескопический манипулятор, который захватывает АНПА и направляет его в нижний торпедный аппарат. Захват АНПА телескопическим манипулятором и действия по его возвращению в торпедный аппарат происходят в несколько этапов (рис. 3). Вначале, манипулятор выдвигается вперед из верхнего торпедного аппарата на всю длину. Затем его передняя часть разворачивается гидроприводом на некоторый угол, так, чтобы ось причального конуса стала параллельно диаметральной плоскости подводной лодки. Аппарат, двигаясь вдоль борта подводной лодки с кормы в нос, по команде выдвигает свою причальную штангу. Управляясь по данным гидроакустической системы приведения (ее антенны находятся рядом с причальным конусом), НПА попадает своей причальной штангой в причальный конус манипулятора и жестко фиксируется в нем. Далее телескопический манипулятор направляет НПА в нишу открытого торпедного аппарата кормой вперед и, далее, проталкивает его в трубу. В январе 2006 г. состоялись испытания АНПА типа AN/BLQ-11 на борту подводной лодки «Scranton» типа «Los Angeles». Программа испытаний предусматривала: – пуск АНПА (выход из трубы торпедного аппарата); – управление аппаратом на удалении от подводной лодки; – возвращение, встреча, управление АНПА с подводной лодки при помощи акустической системы связи; – проверка работоспособности телескопического манипулятора в реальных условиях. Результатом испытаний был первый успешный опыт наведения и стыковки АНПА типа AN/BLQ-11 (по данным гидроакустического телеуправления) к причальному конусу телескопического манипулятора, выдвинутого из верхнего торпедного и подача АНПА в нижний торпедный аппарат подводной лодки. Отмечается, что наиболее сложным был процесс управления аппаратом с помощью гидроакустической системы приведения, когда тот находился в непосредственной близости от борта подводной лодки. В конечном итоге в связи с бюджетными ограничениями ВМС США приняли решение отказаться от серийного производства АНПА типа AN/BLQ-11 и вместо него ускорить разработку более перспективных реконфигурируемых АНПА типа MRUUV (рис. 4). Подводные роботы типа Multi Mission Reconfigurable Unmanned Undersea Vehicle (MRUUV) предназначаются для применения с подводных лодок и способны (в отличие от системы LMRS) обеспечивать решение более широкого круга задач: ведение разведки в прибрежных районах, обследование акватории в заданном районе, обнаружение и классификация подводных объектов, картографирование морского дна, выполнение задач тактической гидрографии, участие в развертывании подводных боевых телекоммуникационных и навигационных сетей. Решение широкого круга задач планируется обеспечить благодаря применению сменной полезной нагрузки. Носовая секция АНПА типа MRUUV содержит сонар и гидроакустическую систему связи; в секции радиоэлектронных систем находится аппаратура управления, навигации, связи и распределения энергии; носовая секция вспомогательных систем содержит GPS, SATCOM, антенны радиосвязи с их подъемномачтовыми устройствами, якорное устройство и носовую балластную цистерну. В секции сменного оборудования находится пространство для полезной нагрузки объемом 36 л, а также стандартные интерфейсы; в кормовой секции вспомогательных систем расположены балластный насос, клапанный блок и носовая балластная цистерна. В кормовой секции находятся электродвигатель, вспомогательные системы и водометный движитель. Для размещения в торпедном отсеке двух АНПА, устройства для их выпуска и приема на борт, а также пультов управления, сменных модулей полезной нагрузки и сменных источников питания отводится пространство, эквивалентное размещению 10 ед. оружия. Для АНПА типа MRUUV прорабатываются 7 вариантов их модульного оснащения применительно к различным носителям: ISR Mission Reconfigurable Modules – модули полезной нагрузки и навесного оборудования для задач разведки, освещения надводной и подводной обстановки; Detect/Engage Mission Reconfigurable Modules – модули полезной нагрузки для обнаружения целей, наведения оружия, а также торпедное вооружение; COMMs Relay Mission Reconfigurable Modules – модули полезной нагрузки для организации сети надводно-подводной связи (сети FORCEnet и PLUSnet); MIW Mission Reconfigurable Modules – полезная нагрузка для выполнения противоминной разведки, поиска мин, картографирования минных полей и уничтожения мин; ASW Mission Reconfigurable Modules – модули полезной нагрузки для задач противолодочной обороны, включающие аппаратуру и буксируемые средства для обнаружения, классификации целей, средства постановки помех, а также пусковые установки с противоторпедами; ASUW Mission Reconfigurable Modules – модули полезной нагрузки для борьбы с подводными лодками противника; Search - Survey Mission Reconfigurable Modules – модули полезной нагрузки для проведения поисковых и осмотровых работ. На рис. 5 показан проект перспективной подводной лодки ВМС США – носителя АНПА, где предусмотрено уже «мокрое хранение» аппаратов различного тактического назначения. В носовой части подводной лодки, где традиционно находится антенна гидроакустического комплекса, далее (в корму) находится так называемый отсек видоизменяемых полезных нагрузок, который выполнен проницаемым для воды. В этом отсеке находится пусковая установка револьверного типа, где на своих штатных местах находятся АНПА различного назначения. В верхней части отсека видоизменяемых полезных нагрузок находится люк, размеры которого достаточны для обеспечения последовательного старта каждого аппарата и их возвращения на свое штатное место. При этом аппарат выходит из люка и входит в него вертикально (вверх или вниз), на ровном киле (используя свои подруливающие устройства). Такой люк может находиться не только спереди, но и сзади ограждения рубки подводной лодки. С подводных лодок могут использоваться не только автономные, но и управляемые по оптоволоконному кабелю (ОВК) необитаемые подводные аппараты. Более 10 лет специалисты в США работали над созданием прочного и недорогого оптоволоконного микрокабеля одноразового применения. Такой микро кабель может быть развернут под водой от автономной катушки (в том числе и на высоких скоростях хода) и служит, для установления надежного, двустороннего канала связи большой производительности. Для развертывания под водой оптоволоконного микро-кабеля используется малогабаритный, самоходный НПА «Flying Plug» (рис. 7), в носовой части которого находится заполняемый водой оптически и акустически прозрачный обтекатель, под которым находятся приемо-излучатель акустической системы самонаведения и оптический датчик, обеспечивающий стыковку аппарата с подводным причальным сооружением. В средней цилиндрической части аппарата находится источник питания, блоки аппаратуры и катушка с оптоволоконным микрокабелем длиной 1,5 км. В кормовой части, заполняемой водой, расположены электроприводы (гребного винта и рулей), гребной винт и крестообразное, габаритное оперение. В нижней части аппарата находится ввод оптоволоконного кабеля от внешней катушки, содержащей 20 км кабеля. Внешняя катушка выталкивается из пускового устройства подводной лодки вместе с НПА «Flying Plug» и находится вблизи лодки (ниже киля), обеспечивая непрерывную подачу кабеля. Аппарат стартует с подводной лодки и двигается по заданному маршруту, разматывая микро-кабель. Цель миссии аппарата – поиск подводного причального сооружения и стыковка с ним, для установления скрытного и высокопроизводительного канала связи по оптоволоконному кабелю. Подводное причальное сооружение имеет «гнездо», куда должен войти аппарат; оно оборудовано гидроакустическим маяком – ответчиком, на который производится наведение НПА в супервизорном режиме. После того, как аппарат входит в «гнездо», происходит процесс стыковки, состоящий из этапов фиксации аппарата в «гнезде» и подключения разъема (специального соединителя) оптоволоконного кабеля к линии.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новости танкостроения:

News image

Украина и Перу готовят кооперативный танк – Tifon-2

Известно , что эту машину создано в Харьковском бюро машиностроения им. Морозова. Базой для Tifon-2 стал русский Т-55. Необходимо подчеркнуть, что в проекте т...

News image

Украинский танк «Оплот» лучше российского Т-90

Выложено много материалов посвящённых альтернативным войнам между Украиной и Россией. Слава богу, в реальности таких войн не было и ласт бог никогда не будет....

News image

Что нам стоит БМП построить

Для начала остановлюсь на вопросе – зачем всё это нужно? Не проще ли просто переплавить старый танк и сделать новый, современный. Может быть, лет 15 назад так...

Информационные технологии на военной службе:

News image

Современное военное производство ускоряется в 25 раз

К выполнению сложных и опасных заданий под водой все более активно будут привлекаться роботы, заявил на лондонской конференции Undersea De...

News image

Армия США отказывается от проектирования вертолетов

Универсальная архитектура бортовой электроники, основанная на открытых стандартах и позволяющая использовать коммерческое ПО и оборудовани...

News image

Железных бойцов обучат нежному общению

Способность наземных роботов к преодолению препятствий повышенной сложности и бережное обращение с объектами наподобие бомб будет повышена...

News image

DO-178C пополнится объектными технологиями моделировани

Сертификационный стандарт DO-178B на ПО для авионики сегодня используют американские и европейские государственные комиссии по управлению ...

News image

Инфракрасная армейская камера за 500 долл

Множество дешевых инфракрасных камер на базе CMOS-технологии (по которой создаются недорогие фотоаппараты и камеры для мобильных телефонов...

News image

Ядерные программные баги

В случае ядерной войны наземные станции дальней связи могут быть разрушены, и в таком случае президент, укрывшись на специализированном са...